TEMPERATURE STRESSES IN THIN VISCOELASTIC
PLATES WITH HEAT TRANSFER

Yu. M. Kolyano and M. V. Khomyak UDC 539.32:536.244

The solution is obtained of the quasistatic problem of thermovigscoelasticity for an un-
bounded plate heated by a concentrated heaf source and the solution of the dynamic problem
of thermovigcoelasticity for a semibounded plate heated along the boundary.

The Quasistatic Problem of Thermoviscoelagticity for an Unbounded plate with Heat Transfer. We
congider a thin unbounded igotropic viscoelastie plate and we assume that heat transfer takes place through
its lateral surfaces z = 0 with the exterior medium of zero temperature according to Newton's law. The
plate is heated by an instantaneous heat source concentrated at the point x =0, y =0, z = +6 and having a
constant capacity q, i.e.,, W, y, 2z, ) =96(x, y, z2—6, 7).

We assume that along the thickness of the plate the temperature varies linearly. Inthis case for the
determination of the nonstationary temperature field in the plate we have the system of differential equations
[1]

1 o 80,7

AT — % = — ——Q
a ot r ®
ATt —pe L OT% 0,809
a Ot r

where
[

S 2t (r, 2, 1) dz;

(=]

T:—l— t(r, z, yde, T* =

28 262
—6 -6
& 1 9 . @ ., 3 2 )
= [V =—) ¥ = —i g — 1
A=t 3 " s x5(+r*
B q M *:3
4508’ < Q

Since the equations (1)have the same form as inthe case of the heating of the plate by a linear source of
heat, the fundamental solution of the heat conduction problem can be written in the known form [2]
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If the capacity of the source changes at the initial time with some quantity, which will remain constant,
i.e., W=qd(x,y, z—0)S (1), then the solution of the heat conduction problem will have the form:
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where
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Fig. 1 Fig. 2
Fig. 1. The graphs of K;(p, w) and K;(p, w} as functions of w for
fixed values of p.

Fig. 2. The graphs of X,{p, w) and K;(p, w) as functions of p for
fixed values of w.
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Recursion relations for the functions Ky, (p, w) are given in [2]. In order to find the numerical values
of such a function of arbitrary order, it is sufficient to tabulate the functions of zero and first order. In
Figs. 1 and 2 the graphs of K {p, «) and K;(p, w) are given as functions of w and p. The numerieal values
of the function K;(p, w) have been obtained on the basis of the known [3] values of Rykalin's function u{p, w).
For the evaluation of the function K, (¢, w) we have used the Ural-1 electronic computer,

It should be mentioned that such functions are encountered in problems of heat conduction [4, 5],
thermoelasticity [2, 6, 7], and thermoplasticity [8]. Inthe present paper, the given graphs of these func-
tions are used for the numerical evaluation of the thermal stresses in a viscoelastic plate.

In order to determine these stresses we make use of the correspondence principle [9], i.e.,
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where the function F for the Kelvin, Maxwell, and Biot materials, respectively, has the form:
Fe=1+4Bexp(—wn1), F=exp(—unm7), F = exp(—=x,),
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The thermal stresses oy, 0, in the elastic plate, induced by T (2), coincide with those caused by a
linear heat source [2] ’ ‘
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The thermal stresses of the bending, induced in the freely supported elastic plate by T* (2), can be
determined from the known [9] formulas
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Fig. 3. The variation of the radial o‘% and annular

thermal stress o at the point R =1, z = 0 of the

infinite elastic plate as a function of the Biot and

Fourier numbers.

Fig. 4. The var1at1on of the radial Urr and annular
thermal stress ov¢ at the point R =1, z =0 of the
infinite VlSCOBi&Sth plate with the Fourier number for
Bi = 1 and certain values of y.
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where the deflection w satisfies the equation‘
CAw = g (14 v) -Zg', @®)
whose particular solution has the form
w=-2 (1.4 v)Q*[Ei.(m-i)mmnr éxp(mﬁa-c). ©)
8 4at

Substituting (9) into the formulas (7), we can see that the thermal stresses of the bending coincide in
form with (6), where instead of Q and 2 one has to put (z/6)Q* and »*2,

Substituting (6) info ), we cobtain the thermal stresses in a viscoelastic plate made of Kelvin and Max-
well materials:
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For Biot viscoelastic materials one has to replace ®, by %, in the formulas (11).

f ne- %4 /a) > 0, thethermal stresses {10) and (11) can be expressed in terms of the functions K,(p;,
wils, Kylpg, wp)
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The thermal stresses induced in the elastic plate by T (3), are obtained by integrating (6) with respect
to time from 0 to T;

where
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where
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For Bi = 0, these formulas coincide with those given in [8].

With the formulas (13), making use of the numerical values of the functions XK, (p, w), Kylp, w) (Fig. 1,
2}, calculations have been carried out for the thermal stresses at the point R = 1 for z =0 in the elastic
plate as functions of the Fourier and Biot numbers, which are represented in the form of graphs in Fig. 3.
In this figure O’%r = 0, /N, cr}g@ = oF /N. For the infinitely large value of the Fourier number, these results
coincide with those obtained previously in [7]. As it is clear from the graphs, the heat transfer between later-
al surfaces of the plate and the medium has an essential impact on the distribution of the thermal stresses.

The thermal stresses in a viscoelastic plate, induced by the temperature field (3), can be written for
a Maxwell material in the form:
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In the case when the surface of the plate is insulated (« = 0), formulas (14) coincide with the formulas
[9] for the thermal stresses in the space, induced by a linear heat source.

In Fig. 4 we have represented the variation of the radial Gxir and annular thermal stress w at the
point R = 1, z =0 of the viscoelastic plate for Bi = 1 as a function of the viscosity coefficient of thé material
n =EM& Bya.

The Dynamic Problem of Thermoviscoelasticity for a Semibounded Plate with Heat Transfer. We con-
sider now an isotropic semibounded plate and we assume that heat transfer takes place through the lateral
surfaces z = 0 with the exterior medium. The temperature of the boundary x = 0 of the plate varies at the
initial time with some quantity t; which remains constant in the sequel. The nonstationary temperature
field and the induced quasistatic thermal stresses for the semibounded elastic plate, whose boundary has a
linear variation of temperature as function of time, are given in [10]. Consequently, the temperature field
in our case has the form

T o =L [exp (— xxw)erfc ( 5 Ty 7—1\31) -+ exp (xx) erfc ( 5 e + VWG)j . (15)
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Applying the Laplace transform, we obtain
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As in the case of the viscoelastic semispace [9], we find the image of the retarding thermoelastic
potential of the displacements for the viscoelastic semibounded plate in the form
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For a Biot viscoelastic material we have the following image of thé thermal stress o}:

where
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In (16) we go back from the image to the preimage [4]. As a result we obtain the following expression
of the thermal stress:
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We find the thermal stress cr§ in the form:
oy = — 2mgpetof (&, 8, —e)+ ——}%E% ol (18)

On the boundary x = 0 of the plate the thermal stresses are:
oy =0, o, = — 2pmyty exp (— Be). (19)

We see that the thermal stresses at the boundary of the viscoelastic semibounded plate with heat
transfer do not differ from those corresponding to an insulated plate [9]. For § — < the stress cr§ tends
to zero.
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For v, — 0 from (17), (18) we obtain the solution of the dynamic problem of thermoelasticity for a

semibounded plate with heat transfer [11].

NQTATION
tx, v, z, 7) is the temperature of the plate;
T is the time;
r*=20/A is the internal thermal resistance of the plate;
o, A, a are the heat transfer coefficient, thermal conductivity and thermal diffusivity;
r is the polar radius;
26 is the thickness of the plate;
W is the density of the heat source;
0(x) is the Dirac delfa function;
8. (x) is the Heaviside function;
UF, 01* E and cr}’, a’.:" are the components of the thermal stresses in the elastic and viscoelastic
plates induced by T and T*, respectively;
v isthe Poisson ratio;
G ig the gshear modulus;
E is the Young modulus;
E;(~1%/4ar) is the exponential integral function;
4 =1/GMm is the relaxation time;
$¥ =1/Gg is the delay time;
v, Gg are the Poisson ratio and the shear modulus for Kelvin material;
Env, Gu are the Young modulus and the shear modulus for Maxwell material;
ot is the temperature coefficient of linear expansion;
g 1 is the relaxation time of the relaxation functions A(7) = Ay exp (=%, 1) and u(7)
= Hy eXp (— 7y 7);
Bi = ad/A is the Biot number;
Fo = art /6% is the Fourier number;
Mi = BiFo is the Mikheev number;
I %) is the first order modified Bessel function of the first kind;
erfex) = 1—erf(x)
erf(x) is the probability integral;
@ = j gexp {— sndT is the Laplace transform of the function ¢;
]
y = (nydYay;
o is the density.
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